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a b s t r a c t

This paper aims to instantly predict within any accuracy the stress distribution of cellular structures
under parametric design, including the shapes or distributions of the cell geometries, or the magnitudes
of external loadings. A classical model reduction technique has to balance the simulation accuracy
and interaction speed, and has difficulty achieving this goal. We achieve this by computing offline
a design-to-stress mapping that ultimately expresses the stress distribution as an explicit function
in terms of its design parameters. The mapping is determined as a solution to an extended finite
element analysis problem in a high-dimension space, including both the spatial coordinates and the
design parameters. The well-known curse of dimensionality intrinsic to the high-dimension problem
is (partly) resolved through a spatial separation using two main techniques. First, the target mapping
takes a reduced form as a sum of the products of separated one-variable functions, extending the
proper generalized decomposition technique. Second, the simulation problem in a varied computation
domain is reformulated as that in a fixed-domain, taking an integration function as the sum of
the products of separated one-variable functions, in combination with high-order singular value
decomposition. Extensive 2D and 3D examples are shown to demonstrate the approach’s performance.
© 2019 Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity Press. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mimicking the nature and design of cellular structures pos-
sessing certain geometric and physical properties has long been
a pursuit, and has significant potential applications in the med-
ical, materials, and aerospace fields, as well as in national de-
fense (Ashby and Medalist, 1983; Gibson and Ashby, 1997; Fleck
et al., 2010; Regli et al., 2016). The recent and fast developments
of additive manufacturing technologies have also overcome the
difficulty of accurately advocating such complex structures and
further boosted their intensive studies and wide industrial appli-
cations. For example, the leading 3D printing server Materialise
Magics provides 28 types of cellular cells for a structural interior
design, parts of which are shown in Fig. 2.

Despite such industrial potential and technical developments,
the design of a digital cellular structure satisfying industrial re-
quirements remains an extremely challenging task. Traditional
design approaches mainly rely on tedious repeated modifications,
namely, the designers repeatedly regenerate the designs, simu-
late their properties, and determine the next design options. In
contrast, optimization-based design approaches (Rodrigues et al.,
2002; Sigmund and Maute, 2013; Panetta et al., 2015; Schu-
macher et al., 2015; Wu et al., 2018; Zhu et al., 2017) are able to
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significantly reduce the amount of required human interactions,
although they also limit the designer’s freedom of choice. Design-
ers typically incorporate their intuition and expertise as part of
the design process, and can instantly predict the properties of
a structure once the modifications are applied, freely exploring
the candidate choices for deeper insight and accelerated produc-
tion. The trend of such an interactive simulation has also been
recognized and adopted by leading CAD/CAE providers, for exam-
ple, Discovery Live recently released by ANSYS, or DreamCatcher
by AutoCAD. However, these software titles only work on solid
structures at the macro-scale and are mainly based on power-
ful computational facilities. An interactive simulation of cellular
structures involves hugely complex structures of much higher
degrees of freedom, and to the best of our knowledge, no previous
approaches have been proposed on this topic.

We hope to resolve this issue under two key requirements:
an instant simulation for any type of complex cellular structures
under modification, and under any simulation accuracy control. It
is assumed here that the candidate design parameters have been
prescribed in advance by the designers, including the shapes or
overall distributions of the microstructures and the magnitudes
of the external loadings. Classical techniques on a model reduc-
tion or brute force fitting have difficulty achieving this goal; the
former has to balance the simulation accuracy and interaction
speed, whereas the latter generating such a fitting function in a
high-dimensional space is non-trivial, as will be further explained
in Section 2. The challenging goal is achieved here by building
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Fig. 1. A direct design-to-stress mapping for cellular structures was built. The design choices include changing the shapes or distributions of the microstructures,
or the magnitude of the external loadings. Once the mapping is obtained offline, an online simulation of the cellular structures can be achieved instantly through a
simple functional evaluation. The mapping is established as a computing solution to the high-dimensional finite element (FE) analysis problem proposed herein.

Fig. 2. Orthotropic microstructures from Materialise Magics.

offline a mapping directly from all of the design parameters to
the structural stress distributions under any simulation accuracy
control. Once the mapping is obtained, the stress distribution
at a specific design prescription is acquired through a simple
functional evaluation and can be achieved instantly.

The target design-to-stress mapping for cellular structures
is established by conducting a bi-scale FE analysis in a high-
dimensional space containing both the spatial coordinates and
the design parameters. Solving this problem incurs the intrinsic
difficulty of the well-known curse of dimensionality (Ammar
et al., 2006), namely, the number of degrees of freedom will
expand exponentially with respect to the number of dimensions.
We further resolve this issue based on a spatial separation strat-
egy. Specifically, domain of varying shape is transformed into a
fixed domain representing the target solution and all involved
integration functions as the sum of products of one-variable func-
tions by extending the novel model reduction approach, namely,
proper generalized decomposition (PGD) (Ammar et al., 2006,
2007; Chinesta et al., 2010, 2011b), and a high-order singu-
lar value decomposition technique (HOSVD). Once the spatial
separation is achieved, the curse of dimensionality is resolved,
and the direct design-to-stress mapping can then be similarly
derived as a classical FE analysis without much difficulty, as
explained in the following sections. The PGD approach was fur-
ther extended to structures of varied topology in our previous
study (Zhu et al., 2016) using R-function (Shapiro, 1991; Rvachev
and Sheiko, 1995). Related to the study, Lamari et al. (2010)
also used PGD for efficient homogenization, treating the mate-
rial properties as design variables on the pixel/voxel representa-
tion of the microstructures, whereas our parametric homogeniza-
tion focuses on the microstructures undergoing parametric shape
modifications.

In summary, the main contributions of the study include the
following aspects. First, the novel concept of a direct design-to-
stress mapping is proposed that can instantly predict within any

level of accuracy the stress distribution of a cellular structure
under the design modifications. Second, a numerical approach to
computing the mapping is developed by conducting an offline
bi-scale parametric FE analysis using the solution in a reduced
form as the sum of products of one-variable functions, which is
built upon previous studies on PGD. Third, a particular numerical
approach was devised to accelerate the PGD solution computation
for such cellular structures under microstructural modifications,
in combination with HOSVD. Fourth, various 2D and 3D numer-
ical examples are tested to demonstrate the performance of the
approach.

The remainder of this paper is arranged as follows. Related
studies are first discussed in Section 2. The basics and problem of
a direct design-to-stress mapping are described in Section 3. In
addition, the overall numerical approach to resolving it is given
in Section 4. The PGD approach used to compute the parametric
mapping even in a varied domain is described in Section 5, along
with further variable decomposition. Various 2D and 3D examples
are provided in Section 6, and some concluding remarks are given
in Section 7.

2. Related work

Designing cellular structures for a performance optimization
dates to the seminar work of Olson (1997). Since then, researchers
from different research communities have devoted significant
effort to the topic, including those in the fields of computational
materials, topology optimization, and computer graphics.

Descriptor-based design. Accelerating the process of novel
material discovery is always a long-term goal in material re-
search. Perhaps limited by the fabrication technologies of the
time, researches have mainly focused on stochastic cellular struc-
tures, quantitatively described based on the stochastic distribu-
tions of the elements, such as a first-order descriptor, or second-
order descriptors (Panchal et al., 2013). Using such descriptors,
the material properties can then be predicted using analytical
homogenization theory (Fullwood et al., 2010). Such studies have
paved the way for novel material designs. However, the intrinsic
statistical property is also a limit in terms of inaccurate geo-
metric descriptions, and the physical property predictions are
varied within an overly large range. Previously, most of these
researches have mainly focused on the microstructure proper-
ties, and have not considered the macrostructures made from
such properties. Recently, utilizing the material texture to super-
performance structure has also attracted researchers’ interest. For
example, Liu and Shapiro (2017) have done a prominent work
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on its usage to construct structures with anisotropy, and Xu
et al. proposed an efficient approach to generate semi-regular
structures for performance optimization (Xu et al., 2017b,a).

Topology optimization. Topology optimization aims to find
the optimal solid–void material distribution within a design do-
main for a performance optimization under certain constraints.
Initially, Bendsøe and Kikuchi proposed a homogenization-based
approach (Bendsøe and Kikuchi, 1988), and later on density-
based approaches became prevalent (Sigmund and Maute, 2013).
These previous studies mainly focus on macro-structural design,
and later, the design of microstructures meeting certain extreme
physical properties, such as a negative Poisson’s ratio, was stud-
ied using an inverse homogenization process (Sigmund, 1994;
Wang and Bertoldi, 2012; Huang et al., 2015). Building on these
studies, researchers started to find optimal cellular structures by
simultaneously optimizing the topologies at both the macro- and
micro-scales (Rodrigues et al., 2002; Panetta et al., 2015), where
the microstructures may be homogeneously or heterogeneously
distributed. These bi-scale topology optimization approaches in-
volve repeated FE computations on the overall macro-structure
and each micro-structure and are extremely computationally ex-
pensive. As a comparison, the proposed approach can instantly
predict the elastic property of a cellular structure.

Fabrication-oriented design. Designing optimal cellular
structures for additive manufacturing has also attracted various
research interests from the area of computer graphics in recent
years. This was first studied to balance the material usage and
physical performance (Chen, 2007; Chen and Wang, 2008; Wang
et al., 2013; Lu et al., 2014). Very recently, Panetta et al. (2015)
and Schumacher et al. (2015) also developed approaches to con-
trol the elastic behavior of porous structures. In addition, Wu
et al. built an optimal bone-like structure (Wu et al., 2018) using
topology optimization approaches built on a GPU (Wu et al.,
2016). Zhu et al. proposed a two-scale framework to optimize
the overall structure and material distributions for achieving the
best functional performance (Zhu et al., 2017). Chen et al. recently
proposed a novel numerical coarsening approach to simulating
inhomogeneous and non-linear elastic objects using discontin-
uous shape functions (Chen et al., 2018). A very interesting
study on the evolution of a microstructure of minimized stress
concentrations was also recently conducted by Panetta et al.
(2017). These studies have produced various structures exhibiting
an optimal physical performance but are not applicable for an
instant simulation of cellular structures.

Interactive design and model reduction. Accelerating the
simulations used for visual effects is one of the most important
topics in the field of graphics, and numerous excellent stud-
ies have been conducted, including the areas of garment edit-
ing (Umetani et al., 2011), fluid simulations (Treuille et al., 2006),
large deformations (Barbič and Zhao, 2011), elastic motion (Li
et al., 2014), material designs (Xu et al., 2015), and stress anal-
ysis (Chen et al., 2017). To the best of our knowledge, no stud-
ies have been conducted on interactive simulations for cellular
structures thus far.

These previous approaches have mainly been achieved based
on classical model reduction techniques (Barbič, 2012; Białecki
et al., 2005; Ganapathysubramanian and Zabaras, 2007). How-
ever, applying such techniques for an instant simulation at any
degree of accuracy control is extremely difficult. The first reason
for this lies in the well-known curse of dimensionality. Consider
for example a design space with ten design variables, each sam-
pled ten times. The total number of samples in the space is 1010.
Its associated stress distribution is far too complex to compute
in advance. For example, it was reported by Kim et al. that a
limited spatial exploration of the detailed clothing effects on a
character costs several thousand CPU hours (Kim et al., 2013).

Fig. 3. Microstructures defined using implicit superformula in Eq. (1) at different
shape controlling parameter values a, b when l = 8, n1 = n2 = n3 = 3, and
w = 0.4.

Fig. 4. Microstructures defined using implicit TPMS in Eq. (2) at different shape
controlling parameter values C , namely, −1.5 to 0.9 in steps of 0.4 from left to
right.

Next, a simulation based on a model reduction is conducted
online in a low-dimensional space, and is unable to achieve both
an instant simulation and high accuracy. Differing from this,
the computed mapping can be controlled within any level of
simulation accuracy, and the simulation of a specific case can be
instantly predicted through a simple functional evaluation.

In order to overcome these limitations, Schulz et al. (2017)
recently proposed an excellent approach to reduce the number of
samplings based on an adaptive K-d tree grid. The stress field for
specific instances can then be obtained through a smooth inter-
polation. The approach demonstrates nice performance at small
number of design variables (maximally 6), but its extensions to
more complicated case of larger number of design variables need
to be further explored.

3. Basics and problem

The direct design-to-simulation mapping aims to establish a
stress function in terms of the design variables, including the
shapes of the microstructures, their distributions, and the mag-
nitude of the external loadings. Some of the basics are first
introduced, and the problem is then mathematically formulated.

3.1. Microstructures and their distributions

The types of microstructures and their overall distributions
within a macrostructure are first described in sequence.

3.1.1. Microstructures
Various types of 2D or 3D microstructures represented as

mesh models, or in parametric or implicit form, are studied here.
In particular, we take three typical types of microstructures: the
microstructures from Materialise Magics, an implicit superfor-
mula (Gielis, 2003), and an implicit 3D triply periodic minimal
surface (TPMS), as shown in Figs. 2, 3, 4, and detailed below.
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Fig. 5. Different types of microstructure distributions can be dealt with using
our approach, which covers various design cases.

Fig. 6. A cellular structure Ω consisting of graded microstructures whose shape
parameter varies from se0 to sed with graded direction d⃗.

The implicit superformula is able to represent various types of
closed 2D or 3D holes. In a 2D case, it has the following form:

Φ(r, φ, a, b, θ )

=
1
w

·

[
|
1
a
cos(

l
4
(φ + θ ))|n2 + |

1
b
sin(

l
4
(φ + θ ))|

n3
] 1

n1
−

1
r
,

(1)

where r, φ are polar coordinates satisfying φ ∈ [−π, π], r cosφ ∈

[0, 1], and r sinφ ∈ [0, 1]; w is a constant to control the hole size;
and a, b, θ are the shape controlling parameters. Fig. 3 shows the
shapes for varying a, b when l = 8, n1 = n2 = n3 = 3, and
w = 0.4.

The classical 3D TPMS has the superior properties of an inte-
rior connection and zero mean curvature. In particular, we take
the P-type element as described below:

Φ(x, C) = cos(2πx − π ) + cos(2πy − π )
+ cos(2πz − π ) − C, x, y, z ∈ [0, 1]. (2)

Its associated shapes with a varying C are shown in Fig. 4.

3.1.2. Microstructure distributions
Generalized functional graded microstructures (GFGM) are

also included in this study, which includes microstructures dis-
tributed homogeneously or graded along certain directions, or
partially solid, as indicated in Fig. 5.

We further explain the details of controlling the shapes of
microstructures within the macro domain. Without loss of gen-
erality, let Ω be a 2D cellular structure under study, and M
be its associated square mesh of element Me; see also Fig. 6.
Given a graded direction d⃗ and the starting locations, a set of
layers Li, 0 ≤ i ≤ d can be defined. Suppose se is a shape
parameter describing a microstructure, and se0, s

e
d are the values

of the parameter at the starting and end layers L0, Ld, respectively.
The shape parameter sei for microstructure layer Li can be de-
fined using various interpolation techniques, and simply takes the

Fig. 7. A cellular structure constructed using various prescribed microstructure
distributions.

following linear interpolation:

sei = se0 +
i
d
(sed − se0). (3)

s = (se0, s
e
d) is treated as the shape controlling parameter for the

whole structure here. It is explicit defined and is in accord with
the user’s instinct. In this case, for example, one can lower the
value of se0 to make the left side of the cellular structure has
the higher density, or get a homogeneous cellular structure by
making se0 and sed equal. In addition, the definitions can also be
extended for part of an input model Ω .

3.2. Mathematical problem formulation

As illustrated in Fig. 7, the following notations are used
throughout the paper.
Ω: a macro-structure, of fixed boundary ΓD and loading boundary
ΓN under external loading τ(t) of parameter t ∈ It;
M: the associated quadrilateral (for 2D) or hexahedral (for 3D)
mesh to Ω;
ω(se): a library of microstructures fixed or varied under parame-
ter se ∈ Is;
s(D): microstructures shape controlling parameter within M ac-
cording to the microstructures distribution D, or s for short;
Ω(s(D), t): cellular structure generated by embedding the mi-
crostructures ω(s) under distributions D for model Ω at load
parameter t.

For example in Fig. 7, while the middle 10 × 10 elements
are solid, the left 10 × 10 microstructures are homogeneously
distributed under the shape parameter se1 and the right 10 × 10
microstructures are horizontally graded distributed, where the
shape parameter is changing from se2 to se3. We correspondingly
have the shape controlling parameter for the whole cellular struc-
ture as s = (se1, s

e
2, s

e
3).

Using the above notations, the direct design-to-stress mapping
aims to produce offline a stress mapping σ(x, s, t), or σ(s, t) for
short, under any level of accuracy control; for an illustration, see
Fig. 1. Under this stress map, achieving an instant simulation of a
prescribed cellular structure Ω(s0, t0) is as simple as evaluating
σ(s, t) at parameter s0, t0.

Accordingly, the mapping σ(s, t) is determined based on the
following high-dimensional simulation problem: Find displace-
ment u such that{

−divσ(u(x, s, t)) = f, in Ω × Is × It,
σ(u(x, s, t)) · n = τ(t), on ΓN ,

u(x, s, t) = uD, on ΓD,
(4)

where f is the body force, and

σ(s, t) = Cε(u(s, t)), ε(u(s, t)) = ∇xu(s, t),

for the fourth-order stiffness tensor C.
Such mapping can also be constructed for cellular structures

consisting of microstructures without parametric deformation. In
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this case, the shape controlling parameter s is replaced by the co-
efficients of the elasticity tensor C. The design-to-stress mapping
with microstructures with or without parametric deformation
can be obtained similarly following the approach explained later
via the stiffness tensor being the design variable instead of s.

3.3. Homogenization theory

It is prohibitively expensive for exact analysis of such bi-scale
problems. The numerical homogenization theory (Bendsøe and
Kikuchi, 1988; Andreassen and Andreasen, 2014) is adopted here
for connecting the micro- and macro-scales, based on which our
approach is proposed. The basic concept of numerical homoge-
nization is therefore first described in this section.

The homogenization theory assumes that the size of the unit-
cell Me containing the microstructure ω is much smaller than the
size of the macrostructure and the microstructure is periodically
repeated throughout the macro-domain. Then the effective elas-
ticity tensor of the periodic microstructure can be computed as:

(CH
ω)ijkl =

1
|Me|

∫
ω

Cpqrs(ε0(ij)
pq − ε(ij)

pq )(ε
0(kl)
rs − ε(kl)

rs ) dV , (5)

where |Me| is the volume of the unit-cell Me, C is elasticity tensor
of the base material of which the microstructure is made, ε0(ij)

pq are
prescribed macroscopic strain fields, and ε(kl)

= ∇xµ
kl are strain

fields based on the displacement fields µkl found by solving the
elasticity equations∫

ω

Cijpqεij(v)εpq(µkl) dV =

∫
ω

Cijpqεij(v)ε0(kl)
pq dV (6)

with the periodic boundary condition for an arbitrary virtual
micro-displacement v. One may refer to Andreassen and An-
dreasen (2014) for more details.

4. Overall approach

Given a cellular structure Ω(s(D), t), the direct design-to-
stress mapping σ(x, s(D), t) is derived by computing the solution
to the elasticity problem in Eq. (4) in the high-dimensional space
Ω × Is × It. Owning to the intrinsic bi-scale geometrical structure
of the cellular models, the solution is derived within a bi-scale
FE analysis framework, where the two scales are linked through
the homogenized elasticity tensors. The overall approach is first
described below.

Parametric homogenization. First, for each microstructure
ω(se) (in the unit cell Me) whose shape is controlled by parameter
se, se ∈ Ise , compute its associated parametric homogenized
elasticity tensor

CH
Me

= CH
ω = CH

ω(s
e). (7)

It is achieved via the parametric homogenization procedure,
based on the numerical homogenization theory, first computing
the parametric displacement fields µ(se) by solving the high-
dimensional elasticity equations∫

ω(se)
Cijpqεij(v)εpq(µkl(se)) dV =

∫
ω(se)

Cijpqεij(v)ε0(kl)
pq dV , (8)

and then deriving the elasticity tensor from Eq. (5).
Design-to-stress mapping. Second, computing the design-to-

stress mapping is equivalent to computing the numerical solution
u(x, s(D), t) to Eq. (4) in the parameter domain Ω × Is × It.

For the cellular structure Ω consisting of microstructures with
parametric deformation, the shapes of the microstructures within

the cellular structure are functions of the location and the shape
controlling parameter s like Eq. (3), that is,

se = se(x, s). (9)

With Eqs. (9), (7), we have the elasticity tensor being the func-
tion of the shape controlling parameter as C = CH (x, s). And
for the cellular structure consisting of microstructures without
parametric deformation, the vector of coefficients of C is treated
as the design domain instead of s. And the mapping is constructed
similarly.

Online evaluation. Once the distribution is modified (s is
determined) and the magnitude of the external loadings is de-
termined, we have the macro-scale displacement field u(s, t)
interactively by substituting the parameters s, t into the para-
metric solution from the above design-to-stress mapping result.
Ultimately, the stress is established by

σ = CH (x, s) · ∇u(x, s, t).

However, solving the high-dimensional elasticity problems in
Eqs. (8), (4) is still challenging because of the curse of dimension-
ality. This problem is resolved via the PGD approach here. Further
details on the basics of the PGD, and our approach for extending
it to domain of varying shape in a bi-scale simulation framework,
are next explained.

5. PGD on domain of varied shape and further variable decom-
position

PGD is a novel model reduction approach firstly introduced
in Ammar et al. (2006, 2007), and aims to compute a simulation
solution in the form of the sum of the products of one-variable
functions (usually constructed on an FE basis). The solution can
be computed within any level of accuracy control. Herein, we
extend the usage of PGD to a varied design domain, and propose
a novel approach based on a higher-order SVD to accelerate its
computation. The basics on PGD is first explained in Section 5.1.
The numerical approach, via an enrichment strategy with an
embedded fixed-pointed iteration approach, to computing the
PGD solution is then explained in Section 5.2. The details of
the proposed approaches for parametric homogenization is then
given in Section 5.3.

5.1. Basics on PGD

The basics of PGD are introduced below. PGD aims to compute
to the high-dimensional problem similar to Eq. (4) as a parametric
solution that possesses the form of the sum of the products of
single variable functions. Let p = (p1, . . . , pm) ∈ Ip be a general
parameter for the simulation problem in addition to the spatial
coordinates x. For example, p = se for the parametric homoge-
nization problem, or p = (s, t) for the design-to-stress mapping
in (4). We then have an approximated parametric solution in the
following form:

u(x, p) ≈ uN (x, p) =

N∑
i=1

wi(x)
m∏
j=1

qij(pj), (10)

where wi and qij are functions in terms of the spatial coordinate
vector x ∈ R2 or R3 and extra parameter pj, respectively, as repre-
sented by 3D and 1D FE bases and coefficients. It has been proven
that u(x, p) can be approximated within any degree of accuracy
by uN (x, p) with a sufficient number of terms N (Chinesta et al.,
2011a).

Determining the coefficients of functions wi and qij is similar
to that of the classical FE method, but in a higher dimensional
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space as Ω × Ip. Specifically, it is computed as a solution u to
the following variational problem derived from the simulation
problem, for example Eq. (4): find u for all δu being the test
function of u in the appropriate space such that

A(u, δu) = L(δu), (11)

where

A(u, δu) =

∫
Ip

∫
Ω

(∇u)TC∇δu dΩ dp,

L(δu) =

∫
Ip

(∫
Ω

fT δu dΩ +

∫
ΓN

τT δu dS
)
dp.

5.2. Numerical approach to computing PGD

Algorithm 1 Numerical approach for PGD
1: Initialize Set the solution u = 0, the enrichment step N=0, and

the approximation error err_iter=1, and provide the maximal enrich-
ment step max_enrich, the maximal iteration step max_iter , and the
tolerance error tol.

2: while err_iter > tol and N < max_enrich do // Enrichment loop
3: N = N + 1
4: Initialize Set w = 0, qj = 1, j = 1, · · · ,m, the error err = 1, and

the iteration step n = 0.
5: while err > tol and n < max_iter do // Fixed-point loop
6: n = n + 1 //Increase the iteration step.
7: wd

= w, qdj = qj, j = 1, · · · ,m // Record the origin values for
a fixed point check.

8: Find w for all δw such that

A(w
m∏
j=1

qj) = L(δw
m∏
j=1

qj) − A(uN−1, δw
m∏
j=1

qj).

9: Find qk (k = 1, · · · ,m) one by one for all corresponding δqk
such that

A(w
m∏
j=1

qj) = L(wδqk
∏
j̸=k

qj) − A(uN−1,wδqk
∏
j̸=k

qj).

10: err = ||wd
− w||+

∑m
j=1||q

d
j − qj|| //Check whether the fixed

point has been reached.
11: end while
12: u = u + w

∏m
j=1 qj. // Enrich the solution.

13: err_iter = ||w||·
∏m

j=1||qj|| // Check whether the solution has
reached convergence.

14: end while
15: Return u.

The numerical approach to solving the highly nonlinear equa-
tion Eq. (11) consists of a greedy enrichment procedure with an
iterative fixed-point procedure, as briefly described in Algorithm
1 and explained below. For further details, refer to Ammar et al.
(2006, 2007).

The number of terms increases by 1 after each enrichment
step. Specifically, supposing that ui−1(x, p) is already known, after
the (i − 1)th enrichment step, we then enrich the solution in the
following form:

ui(x, p) = ui−1(x, p) + w(x)
m∏
j=1

qj(pj), (12)

where w(x) and qj(sj) (j = 1, . . . ,m) are functions to be deter-
mined in the ith enrichment through the following procedure.

Substituting Eq. (12) into Eq. (11) provides

A(w
m∏
j=1

qj, δu) = L(δu) − A(ui−1, δu). (13)

An iterative fixed-point procedure is applied to compute w
and qj, j = 1, . . . ,m, one by one, by fixing the other functions.
In this process, the test function δu is chosen as the following
separated form:

δu = δw
m∏
j=1

qj +
m∑

k=1

wδqk
m∏

j=1,j̸=k

qj, (14)

where δw ∈ {w|w ∈ H1(Ω), w = 0 on ΓD}, and δqk ∈ L2(Ik)
are chosen as the FE basis function associated with each FE grid
in its own space.

Note it is also well known that the convergence of the fixed-
point algorithm is not guaranteed, but generally provides good
results (Cueto et al., 2016). Once the fixed-point iterations solve
for the optimal rank 1 enrichment term and using the optimal
enrichment term at each step is sufficient to guarantee conver-
gence with a sufficient number of terms (Falcó and Nouy, 2011;
Chinesta et al., 2011a). The accuracy and convergence of PGD,
and its ability in resolving curse of dimensionality will be further
discussed in Section 6.4.

5.3. PGD over parametric domain

Previous studies on PGD have mainly focused on a fixed or
simple parametric domain. Its extension to a varied parametric
domain is systematically described in this section. In particular, a
strategy based on HOSVD that greatly accelerates its computation
is proposed. We specifically explain the procedure for computing
the PGD solution to the homogenization equation in Eq. (6).

5.3.1. Domain transformation
With this situation, the microstructure ω involved in Eq. (6)

varies under the design parameter se ∈ Ise . We first transform
the parameter se to that in the integration function using a
characteristic function in the integration function.

Specifically, given a varying shape ω(se), se ∈ Ise , in the micro
structure cell Me (a square in a 2D problem, or a cube in a 3D
problem), the boundary of ω(se) is defined by Φ : Me × Ise → R
such that⎧⎨⎩

Φ(x, se) > 0, x inside ω(se),
Φ(x, se) = 0, x on the boundary of ω(se),
Φ(x, se) < 0, x outside ω(se).

(15)

We also define the following characteristic function,

H(Φ(x, se)) =

{
1 , if Φ(x, se) ≥ 0,
0 , if Φ(x, se) < 0,

(16)

which indicates whether a given point x belongs to ω(se).
Accordingly, from Eq. (6) we have∫

Ise

∫
Me

H · Cijpqεij(v)εpq(µkl(se)) dVdse

=

∫
Ise

∫
Me

H · Cijpqεij(v)ε0(kl)
pq dVdse,

(17)

where C is a constant in Me, being the elasticity tensor of the
base material for the microstructures, and the parametric solution
µkl(se) can be solved in the separated form using PGD.

5.3.2. High-order SVD for function separation
The expression in Eq. (17) provides a simulation problem

defined in the fixed domain Me. Note that se = (se1, . . . , s
e
r ) is

the design parameter of the micro-structures, and Ise =
∏r

j=1 Isej .
However, the characteristic function H(Φ(x, se)) is not separated
in its variables se1, . . . , s

e
r , which prohibits an efficient integration.
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This is to be resolved by approximating H(Φ(x, s)) using a func-
tion as the sum of one-variable functions based on the concept
of HOSVD (Kolda and Bader, 2009). HOSVD decomposes a tensor
into a core tensor multiplied by a factor matrix along each mode,
which is used to approximate the function following a sampling,
tensor decomposition, and variable separation procedure.

1. Sampling. Obtain a nx×ny×· · ·×nsr grid mesh for the high-
dimensional domain Me × Ise and sample the values of the char-
acteristic function H at the grid points (xix , yiy , ziz , s1is1 , . . . , srisr )
to obtain the tensor H ∈ Rnx×ny×nz×ns1×···×nsr :

Hix,iy,iz ,is1,...,isr = H(xix , yiy , ziz , s1is1 , . . . , srisr ), i∗ = 1, . . . , n∗

2. Tensor decomposition. HO-SVD is applied (Bader et al.,
0000) to the tensor H, obtaining

H = S ×1 Ux
×2 Uy

×3 U z
×4 U s1 ×5 · · · ×r+3 U sr ,

where S is the core of size nx × ny × · · · × nsr , each U∗
∈ Rn∗×n∗

is a factor matrix corresponding to dimension ∗, and ×k indicates
the k-mode product of the tensors. H is an approximation of H
with accuracy control by choosing nx, ny, . . . , nsr (1 ≤ n∗ ≤ n∗)
satisfying ∥H − H∥ < ϵ, where ϵ is the tolerance.

3. Variables separation. Using the columns of the factor ma-
trices as a coefficient vector to construct the interpolate functions,
the characteristic function H(x, s) can be decomposed as follows:

H ≈

nx∑
ix=1

· · ·

nsr∑
isr=1

Six,...,isrU
x
ix (x)U

y
iy (y)U

z
iz (z) · U

s1
is1 (s1) · · ·U

sr
isr (sr ),

where each U
∗

i is a function of ∗ represented by the coefficient
vector U∗

i as the ith column of U∗ and based on a 1D linear FE.
4. Integration computation. As a result, the variables are

separated for the multivariable function H(x, se), and the high-
dimensional integration is approximated as the sum of the prod-
ucts of some low-dimensional integrations in the following form,
which takes much less computational effort:∫

Ise1

· · ·

∫
Iser

∫
Me

H(x, se)z(x)
r∏

j=1

tj(sej ) dxds
e
r · · · dse1

=

nx∑
ix=1

· · ·

nsr∑
isr=1

Six,...,isr

∫
ωU

z(x)U
x
ix (x)U

y
iy (y)U

z
iz (z) dx

·

∫
Is1

t1(s1)U
s1
is1 (s1) ds1 · · · · ·

∫
Isr

tr (sr )U
sr
isr (sr ) dsr .

(18)

where z and tj are general functions of x and sj respectively.

6. Experiments

The proposed approach to derive the direct design-to-stress
mapping was implemented on a PC with a 3.6 GHz Intel Core
i7 CPU and 32 GB of RAM. The performance was tested for
various 2D and 3D structures. The 2D examples were mainly
to evaluate the mapping accuracy and its computational costs,
whereas the industrial 3D examples were mainly to demonstrate
the performance on complex macro- and micro-structures. All
materials used have a Young’s modulus of 1 N/m2 and a Poisson’s
ratio of 0.33. The unit cell is meshed to 10 × 10 in 2D case or
a 10 × 10 × 10 in 3D case for microstructure homogenization.
The approach computes once all the solutions for the design
parameters within a certain range. In order to demonstrate its
performance, the results obtained via classical FEA or numerical
homogenization at a prescribed parameter are used as bench-
mark. In all the accuracy analysis, the accuracy measured does not
consider the error from homogenization. Results on the numerical
experiments are summarized in Table 1.

Fig. 8. Comparison between the components of the computed effective elasticity
tensor mapping c1, c3 without HOSVD and csvd1 , csvd3 with HOSVD, and the bench-
mark traditional homogenization results cref .1 , cref .3 at the sampling points. The
microstructures are defined using the superformula in Eq. (1) under variation of
the parameters a when b = 0.6, θ = 0.

Fig. 9. Studied 2D beam-like example with varying material property and
external loading parameters.

6.1. Accuracy analysis

The derived mapping can approximate the solution to the
problem in Eq. (4) with high accuracy, which we first illustrate
for various 2D design cases at both the micro- and macro-scales.

Microstructures. To evaluate the accuracy of the parametric
homogenization approach, the microstructures described by the
superformula in Eq. (1), and illustrated in Fig. 3, were first tested.
In addition to the planar coordinates (x, y), there are three extra
shape controlling parameters a, b ∈ [0, 1], and θ ∈ [0, π]. It takes
about 1.1×104 s and 1.5×103 s to obtain a 15-term PGD solution
of the homogenized elasticity tensor offline without and with the
HOSVD, respectively. The results obtained are also compared with
the benchmark results obtained using the FEA, sampled with a
20 × 20 mesh, shown in Fig. 8. The comparison among c2, csvd2 ,
and cref .2 is omitted because c2 and c3, and csvd2 and csvd3 , are alike.
In addition, c1 and cref .1 demonstrate a close approximation at a
mean relative error of 1.4%, whereas csvd1 and cref .1 demonstrate a
close approximation at a mean relative error of 5.0%.

Macro-structures. The simulation accuracy for a macro-
structure was also studied on a 2D beam-like example, as shown
in Fig. 9. For a clear explanation, the macro-structure is assumed
to be made of orthotropic homogeneous microstructures, e.g. the
superformula shapes with θ = 0, whose elasticity tensor is con-
trolled by parameters c1, c2, c3 in the form of the 2D orthotropic
property. In addition, the external loading exerted on the model
τ(t1, t2) is controlled using the parameters t1, t2.

Denoting ∗ = ∗/c1, we have a boundary value problem of the
4 design parameters c2, c3, t1, and t2. It takes 525 s to obtain an
offline PGD solution of 200 (N = 200) separated terms. In Fig. 10
we compare the computed displacement or stress fields with the
benchmark FE results for specific values of c1 = 103, c2 = 0.5,
c3 = 0.2, t1 = 0.5, and t2 = −0.8. The mean relative errors at
different parameter values are also plotted in Fig. 11.
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Table 1
Summary of execution time of the 2D and 3D examples studied.
Case Mesh Design variables Grids per variable Offline time Online time FEA time Estimated brute-force sampling time

2D superformula 10 × 10 3 10 24.8 m (15 terms) 5.7 ms 1.0 s 22.2 m (113 samples)
Macro beam 300 4 10 525 s (200 terms) 5.8 ms 0.41 s 100 m (114 samples)
General cellular case 300 8 10 3.50 h (30 terms) 1.3 ms 0.85 s 5.06 × 104 h (118 samples)
Femur bone 12250 2 28 4.07 h (20 terms) 31 ms 6.8 s 1.59 h (292 samples)
Offset link 19417 3 15 1.10 h (15 terms) 37 ms 8.5 s 9.67 h (163 samples)

Fig. 10. Comparison of the macro simulation results obtained using the pro-
posed approach against the benchmark FE results in the case of c1 = 103 ,
c2 = 0.5, c3 = 0.2, t1 = 0.5, and t2 = −0.8.

Fig. 11. Mean relative errors as the material parameters or loading parameters
vary for the example shown in Fig. 9.

Accuracy control. Using the proposed approach, the stress
mapping can be achieved within any simulation accuracy. In
Fig. 12, the average relative error decreases as more PGD terms
are computed, at the cost of an increase in the computational
time. For example, we used 10 terms to achieve an approximation
error of 3.9%, 50 terms for 0.7%, and 200 terms for 0.45%. We also
notice that the relative error curve in Fig. 12 does not decrease
monotonically but ends with a lower value, which may come
from the fact that a maximal fixed-point iteration number is set
in our implementation.

6.2. Performance on 2D cellular structure design

We further tested the performance of the approach on an
overall cellular structure containing various microstructure dis-
tributions: homogeneous/partial/graded cellular structures. The

Fig. 12. As the number of PGD terms increases, the relative approximation
decreases at the cost of an increase in the computational time for the case
shown in Fig. 9 when c1 = 103 , c2 = 0.5, c3 = 0.2, t1 = 0.5, and t2 = −0.8.

Fig. 13. A specific 2D example of cellular structures.

design-to-stress mapping is computed once for all general cases,
and specific value settings provide different types of cellular
structures.

The test was conducted on the cellular structure shown in
Fig. 13, determined by applying six design parameters, namely,
ai, i = 1, . . . , 6, the distribution control of the microstructures,
and two other parameters t1, t2 controlling the external loading.
The structure has three different cellular parts, each made of
10 × 10 superformula-shaped microstructures in which the a
values controlled by the design parameters ai, i = 1, . . . , 6, and
b = 0.4, θ = 0 are constant (see also Eq. (1)). a1, . . . , a6 are
treated as extra parameters beyond the external force parameters
t1, t2.

It takes approximately 3.50 h to get the design-to-stress map-
ping under accuracy control, which consists of a 30-term PGD
solution with those 8 parameters. And it takes about 5.8 ms for
a specific design online using our approach while it takes about
8.5 s using the straight-forward approach including computing
the effective elasticity tensor of each microstructure via numer-
ical homogenization and the FEA on the macro-model with the
computed homogenized elasticity tensors. When a = (a1, . . . , a6)
take different values, the general case can be reduced to the
case of a partial cellular structure, or graded cellular structure,
as detailed below.

Partial cellular structures. When a1 = a2 = a□
1 , a3 = a4 = a□

2 ,
a5 = a6 = a□

3 , and at least one, but not all, of a□
1 , a□

2 , a□
3 is zero, the

general case is reduced to a partial cellular structure, as shown in
Fig. 14(a),(c),(e). As can be seen from the results, different types
of cellular structures provide very different simulation results.

Graded cellular structures. In this test, we set a2 − a1 : a3 − a2 :

a4 − a3 : a5 − a4 : a6 − a5 = 9 : 1 : 9 : 1 : 9, which gives the
graded cellular structure shown in Fig. 14(b). The values of a1, a6
are controlling parameters used to determine the microstructure
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Fig. 14. The stress distribution for cellular structures of different microstructure
distributions with different shape parameters can be instantly evaluated using
the derived design-to-stress mapping for the cellular structure in Fig. 13. The
external loadings for these figures are all the same as τ = (0.5, −0.8). (The
deformation in the figure is scaled by 10−2 for illustration.).

Fig. 15. Femur bone consisting of different gradually varied microstructures
represented in TPMS defined using Eq. (2), where C1, C2 are the design
parameters.

distributions. Once a1, a6 are given, the associated stress fields of
the cellular structure were instantly derived. See for example the
results in Fig. 14(d),(f) for two different cases: a1 = 0.05, a6 =

0.92, and a1 = 0.92, a6 = 0.05.

6.3. 3D cases

Various 3D examples were also tested to demonstrate the us-
age of the derived mapping in an instant simulation. This consists
of a Femur bone in Fig. 15, an offset link with voxel meshes in
Fig. 18. The simulation of a general hexahedral model has to take
further account of the Jacobian matrix. The microstructures are
generated using TPMS or models from Materialise Magics.

Femur bone. The femur bone in Fig. 15 consists of a gradual
variation of TPMS cells within a shell, where the macro-structure
has a voxel mesh of 12,250 elements and 14,960 nodes. Two
different methods were used to control the distribution of the mi-
crostructures: changing from boundary to inside and from bottom
to top, as shown in Fig. 15(b),(c), respectively. In each case, we
used two shape parameters C1, C2 to define the microstructure
distributions, from which the interior shapes are derived using

Fig. 16. The Von mises stress distributions and deformations (scaled) of different
cellular designs depicted in Fig. 15(b) at different distribution of microstructures
at parameters of DA = (0.9, −1.46), DB = (0.9, 0.9), DC = (−1.31, 0.9).

Fig. 17. The Von mises stress distributions and deformation (scaled) of the
boundary to inside gradually vary the cellular bone structure in Fig. 15(c) with
different microstructures distributions.

linear interpolation. Different values of C1, C2 provide different
types of distributions. It takes approximately 4.07 h to compute
the 20-term PGD solution offline using these 2 shape control
parameters. Once the offline process is complete, the stress dis-
tribution of each design case can be instantly derived, which can
take as short as 45 ms. The simulation results for the cases in
Fig. 15(b),(c) are shown in Figs. 16, 17, respectively.

Offset link. The offset link model in Fig. 18 consists of two
rings with a link between them. A voxel mesh of 19,417 elements
and 24,147 nodes is generated for the macro model. We assume
that the two rings are solid and that the link consists of homo-
geneous microstructures whose elasticity tensor is controlled by
3 material parameters for the orthotropic microstructures. It took
approximately 1.10 h to obtain the PGD solution offline. After this,
the macro-scale stress distribution an be instantly obtained for
different microstructures. The associated results are respectively
shown in Fig. 19 for TPMS microstructures and in Fig. 20 for the
orthotropic microstructures from Materialise Magics.

6.4. Discussions

Curse of dimensionality. The proposed approach achieves the
performance of instant stress prediction essentially via resolving
the curse of dimensionality using PGD. It is mainly achieved via
separating the variables following two main strategies, separating
the variables both in the solution and in the integrands. Firstly,
the solution to a high-dimensional problem is represented in
the form of separated variables, as in Eq. (10). This is achieved
by assuming that the parametric solution can be approximated
using limited terms, each of which is the product of the func-
tions of separated variables. Secondly, the integrands are further
separated via separating the characteristic function of the para-
metric deforming geometric domain using HOSVD, whereas the
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Fig. 18. A partial cellular offset link model consisting of different microstruc-
tures.

Fig. 19. Displacement fields (top row) and Von mises stress distributions
(bottom row) of the cellular offset link structure consisting of different mi-
crostructures determined by different TPMS shape parameters defined using
Eq. (2). The shape parameters are C = 0.9, −0.26, −1.42, respectively from left
to right.

Fig. 20. Von mises stress distributions and deformations of the offset structures
with 9 different microstructures from Materialise Magics. It takes about 37 ms to
obtain the simulation results once the microstructure is determined or replaced.

material property and external force parameters in the integrand
are naturally separated through a mathematical derivation. As
a consequence, the integration involved in the process of stress
computation, can be performed in each separable variable space.
Ultimately, the computational complexity of the derived problem
using our approach is far less than that of the original high-
dimensional approach, and consequently avoids the issue of curse
of dimension.

In practice, we found that the PGD result of less than 100
terms provides good results, e.g. the 16-term result gets an ap-
proximation error below 1% for the macro beam example in
Section 6.1. Similar observations were also found in Chinesta
et al. (2011a), where the authors found in all cases that the
approximation converges towards its target solution, and show
their confidence about the generality of the PGD. However, the
number of terms required to obtain an accurate solution may
depend on the regularity of the exact solution, instead of the
problem dimension, as pointed out by the authors (Chinesta
et al., 2011a) from their empirical observations. When an exact
solution of a particular problem can be represented by a re-
duced number of functional products within enough accuracy, the
PGD approximation is optimal. Otherwise, the solution is a non-
separable function for the particular coordinate system used, and
the number of terms in the PGD expansion does grow in order
to span the full tensor basis of approximation functions. In this
case, the PGD then offers no particular advantage , and the curse
of dimensionality is not essentially resolved using PGD.

Accuracy and convergence. The design to stress mapping
is computed via two main steps: determining the parametric
material property for micro-structures using PGD in combina-
tion of HOSVD, and computing the parametric stress in terms of
material properties and external loadings using PGD. Thus, the
accuracy of the final design to stress mapping is determined by
the numerical accuracy of PGD and HOSVD; the homogenization
error is ignored in the study. In addition, the accuracy of the PGD
approach is mainly affected by the strategy of fixed-point itera-
tions and the enrichment strategy of adding more PGD terms, as
seen from Algorithm 1. The algorithmic convergence is similarly
determined.

In our experiments in Section 6.1, tens of enrichment steps
provide a result of mean relative error below 5% for most pa-
rameter points. Specifically in the parametric homogenization
process without using HOSVD, an accuracy at a mean relative
error of 1.4% was obtained for the superformula case. Further
applying HOSVD in the parametric homogenization will separate
the variables and reduce the computation efforts, but on the other
hand surely decreases the accuracy. Specifically in this example,
applying HOSVD to approximate the characteristic function has
an approximation error of 3.8% on the sampling grids. It in turn
ultimately gives a mean relative error of 5% for the parametric
homogenization with HOSVD.

It is also noticed that the stress we computed herein is ho-
mogenized because the micro- and macro-scales are linked by
the homogenized elasticity tensor, and the specific geometric
information of the micro-structures is lost in a certain sense.
The pointwise stress inside the microstructure, which actually
determines the structure fracture, may be higher depending on
the geometry of the microstructure. As future work, we plan to
look into a new multiscale framework such as FE2, instead of
homogenization, to capture the physical properties of the points
inside the microstructure.

Offline computation complexity. The computational com-
plexity is analyzed. Let Nx and Npj be number of degrees of
freedom of the functions wi(x) and qij, in Eq. (10) respectively.
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Using the PGD approach results in a computation problem of
complexity

(Nx +

m∑
j=1

Npj ) · N · n,

where n being the number of the fixed-point iterations for each
enrichment step.

As comparison, the numerical complexity of the original high-
dimensional problem Eq. (4) is

Nx ·

m∏
j=1

Npj .

For example, assume a very coarse descriptions Nx = 1000,
Npj = 10, m = 10, N = 50 and n = 20, the numeric complexity is
1000× 1010

= 1013 for an FE approach while (1000+ 10× 10)×
50 × 20 = 1.1 × 106 for the above approach.

7. Conclusion

This paper proposed a novel approach to achieve an instant
simulation for cellular structures by applying it as computing
solution to a high-dimension bi-scale FE analysis problem. This is
achieved by computing offline a direct design-to-stress mapping,
which is a general FE solution involving the design parameters in
a high-dimension space where the design parameters are taken
as extra coordinates in addition to the spatial coordinates. The
recently developed model reduction technique, PGD, is extended
to resolve the involved key issue of the curse of dimension-
ality, at both the micro- and macro-scales. As the experiment
results demonstrate, the proposed approach works for various
cellular structure design problems including editing or replacing
the microstructures, changing their distributions, or changing
the magnitude of the external loadings. It can also achieve a
simulation with any level of accuracy almost without any loss of
online simulation speed.

The proposed approach is still limited in several aspects. First,
the instant online simulation is achieved at the cost of expen-
sive offline computations. This issue can be overcome through
a further separation of the variables, in either of the spatial
coordinates. In addition, further use of parallel computation tech-
niques can also help resolve this issue. Second, the approach
mainly works for cellular structures consisting of microstructures
homogeneously distributed or controlled by a few distribution
parameters. Although such cases are popular and important in
industrial design, further extending the approach to arbitrary
types of microstructure designs is still a particularly challenging
and interesting topic that deserves further research efforts.
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